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ABSTRACT 
Using initial value problem approach the evolution of linearized disturbances in a stratified shear flow is 

studied. The resulting equation in time posed by using Fourier transform is solved for the Fourier 

amplitudes for the case of bounded couette flow with point source of the field of transverse velocity and 

density as the initial distributions. For small values of Brunt alaisaV   frequency the perturbation solutions 

are obtained.  

 

Keywords: Stratified bounded couette flow, initial value problem, fourier transform, Brunt Vaisala  
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I. INTRODUCTION 
The stability of stratified shear flow is of importance in atmospheric and oceanographic environments and 

has been investigated by many researchers. By using initial-value problem approach, Eliassen, Hoiland and 

Riis (1953) they showed that a disturbance originating from arbitrary initial conditions in a flow between 

two parallel walls would behave asymptotically. Miles (1961) established the conjecture that a sufficient 

condition for stability in a parallel stratified, inviscid flow is that the local Richardson number
0

J  should 

every where exceed 
4

1 . Kuo (1963) found that the plane Couette flow in stably and unstably stratified 

fluids  to be more unstable when it is bounded both above and below than when its depth is infinite. 

Chimonas (1979) studied the stability of stratified shear flow and concluded that the flow will be unstable if 

the local Richardson number falls below
4

1  anywhere in the flow. Brown and Stewartson (1980) have 

resolved the controversy surrounding the decay rate in favour of original results of Eliassen et al (1953).  

 

 In this paper, we have extended the work of Criminale and Drazin (1990), for the case of stratified 

bounded coquette flow. The essence of the approach is as follows: Taking a multilayered basic flow with 

piecewise linear velocity profile, complete general solutions to the linearized equations of motion are 

obtained as functions of all space variables and time, when posed as initial-value problems. The 

distributions are resolved into two components, rotational and irrotational. The solution for the hypothetical 

initial-value problem for which the basic flow is unbounded but coincides with the actual flow in the layer 

is the rotational solution. The irrotational solution in each layer is specified uniquely by satisfying the 

interfacial conditions and boundary conditions at infinity. Vijayalakshmi and Balagondar, (2017) studied 

the evolution of linearized perturbations in a magnetohydrodynamic baroclinic couette flow using initial 

value problem approach. 
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II. MATHEMATICAL FORMULATION 

We consider an inviscid, incompressible, inviscid fluid of density  moving with velocity q


 under the 

influence of gravity g


 directed in the negative y-direction. We assume that the fluid  is Boussinesq for 

which motion is governed by the equations  

0q . 


, (2.1) 

  gρp-q .q
t

q
ρ

















, (2.2) 

  0ρ.q
t

ρ




 
, (2.3) 

where p is the pressure.  

 For linear stability analysis, we superimpose a small perturbation upon the mean flow i,e.,  

q
0

q q 


,    py
0

pp  ,    ρy
0

ρρ   (2.4) 

where  

  00,σy,yU
0

q 


,  y0pp  ,   y0ρρ   (2.5) 

are the  basic unperturbed equilibrium velocity, pressure and density and q


,  p and  ρ are the perturbed 

quantities of velocity, pressure and density respectively.  is the shear intensity which is a constant 

 

To study the evolution of linearized disturbances in a stratified shear flow, we linearize equations (2.1)–

(2.3) using (2.4), the linearized differential equations of motion (neglecting the primes) by (i) defining the 

transformation of co-ordinates of the form 

zζ  y,η  y t, σ -x   ξ   t, T  ,  (2.6) 

(ii) employing three - dimensional Fourier transformation of the form 

    ζd dηξd
ζγ βηξαi

eT;ζ;η;ξuT;γ;β;αû







 












 , 

and with similar expressions for v̂ , ŵ , p̂  and ρ̂ ,  

and (iii) making use of Squire transformation  

(2.7) 

α

ŵαûγ
w,

α

ŵγûα
u





  (2.8) 

which are the velocity components  in the α  and φ directions.  

 Eliminating p̂ , the set of equations (2.1)–(2.3) is reduced to  

  0   v̂2α2Nv̂2K
2dT

2d
 , (2.9) 

where  2σαTβ2α2K   and  2γ2α2α  . 

dy

0
ρd

0
ρ

g2N  ,
0

ρ  is the equilibrium density, N is the Brunt alaisaV   frequency. 

Equation (2.9) is solved with appropriate initial conditions for v


 and ρ̂ , the other velocity components 

û , ŵ  can be obtained by inverting the relations The pressure p


 is obtained by taking the divergence of 
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the momentum equations. and it is found that 
  

2K

ρ̂ σαTβgv̂
0

ρ α 2σ i
p̂


 , for 02K   

Two sets of solutions exist for equation (2.9), when 02K  , the disturbance is rotational and for 

02K  , the disturbance is irrotational. The vanishing of the product v̂2K  corresponds to Laplace 

equation 0v̂2  in real space. We denote v̂  as 
R

v̂ when 02K   which is called the rotational 

solution and v̂  as 
I

v̂ when 02K   and is called the irrotational solution. Therefore v̂  can be resolved 

into two components and thus 
I

v̂
R

v̂v̂  . 

Now considering the case 02K  , we assume the regular perturbation expansion of v̂  in terms of the 

parameter 
2N  in the form 

          ...Tγ,β,α,
2

v̂
22NTγ,β,α,

1
v̂2NTγ,β,α,

0
v̂Tγ,β,α,

R
v̂   (2.10) 

where 
R

v̂ is the rotational component of v̂ . 

 From the zeroth, first and second order,  

   

 

ˆ ˆ ˆ ˆT Ω α,β, γ Ω α,β, γ βΩ   Ω   β σαT2 20 1 0 1v̂ N α  
R 2 2 22 σαα ασ α αα β σαT

        
      

 

   1

2 22 2α β σαT α β σαTβ σαT α 1 β σαT
tan log log 

2 2α 2σ α 2σ αα α



                        
   

 

 
 

ˆ ˆ ˆ3Ω  Ω   2 Ω   β σαT β σαT 1   α1 20 0 12 - tan N
2 2 2 2 2 22α α σα σαασ α α σ α αα β σαT

                                    

 22α β σαT1  β σαT β σαT β σαT β σαT1 1tan  log 2  tan
2 2 2α α α α2σ α α

                                    
   
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     
2

2 2 42 2α β σαT α β σαT β σαT1 1 1
log log 

2 2 22 α σααα α 12σαα

                          
    

 

 



















 






 




































 







 


α

σαTβ1tan
α

σαTβ
 2

2

2α

2σαTβ2α
log

α

σαTβ

α4α48σ

  
0

Ω̂
 

   














 




















 







 












 




























 
3

α

σαTβ

3

1

2α

2σαTβ2α
 log

α

σαTβ1tan
α

σαTβ
 2

2α

2
σαTβ2α

 log  

 











 














 






 













 







 


α

σαTβ1tan
2α2σ

  2

α

σαTβ1tan
α

σαTβ
2

2α

2
σαTβ2α

 log 
α

σαTβ

α3α42σ

  
0

Ω̂
 

 2σαTβ2α

1

α

σαTβ1tansin
α

σαTβ1tan cos





















 














 
                              (2.11) 

The solution for 02K   which corresponds to irrotational motion is obtained by considering the two–

dimensional Fourier transform of the perturbation equations instead of the full three–dimensional 

decomposition. Using moving co-ordinate transformation given by equation (2.6), 0v̂2K   

corresponds to  

  0
I

v2T2α2σ2α
η

I
v

αT 2iσ
2η

I
v2









 


, (2.12) 

with 

   




















dζdξ
γζαξi

e Tς,η,ξ,
I

vTγ;η,α,
I

v
I

v


, (2.13) 

is the irrotational part of v̂ . The solution of equation (2.14) is found to be  

    αTη iσηα
e TB

αTη iσηα
e TA

I
v








, (2.14) 

where A(T) and B(T) are constants of integration . 

 

In order to combine 
R

v̂  and Iv


 to obtain the complete the solution and satisfy the matching condition 

R
v̂ must be inverted once to obtain  Tγ;η,α,

R
v


i,e., 

    dβ
η iβ -

eTγ;β,α,
R

v̂
2π

1
Tγ;η,α,

R
v 







. (2.15) 

 With initial velocity and initial density as unit pulse, the initial conditions are expressed as  

       
0

z-zδ 
0

y-yδ 
0

x-xδ
0

Vz,0y,x, v  . (2.16) 

       
0

z-zδ 
0

y-yδ 
0

x-xδ
0

ρ~z,0y,x,ρ  . (2.17) 
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In terms of moving co-ordinates and three-dimensional Fourier transform ,equations (2.18) and 

(2.19) becomes 

   







 
 0

γz
0

βy
0

αxi
e

0
Vγβ,α,

0
Ω γβ,α,

0
v


. (2.18) 

   







 
 0

γz
0

βy
0

αxi
e

0
ρ~γβ,α,

1
Ωγβ,α,

0
ρ~ . (2.19) 

R
v


is found to be 


























































ασα

1
1

ασα

0
ρ~

α2α2σ

0
V

2α212σ

2α4N

0
ρ~

0
TV

ηα
e

ησαT
0

γz
0

αxi
e

R
v


 

 

 
4 3 4 42αη V ρ 2i N α V i N α Ve 2 4 40 0 0 0N 2α N -

2 2 2 2 2 5 5σααηα σ α α σ α α 2σ α

  
    
   

 

 

 























































 ηd

ηη

η αηη α
eη

2α3α42σ

0
Vα4N i

σ

4N4α2
α2N-

ασα

0
ρ~

α2α2σ

0
V

 

 

  η α
eη

0
iVηd

η

η αηη α
e ηη

2σ

2N

ασα

0
ρ~

α2α2σ

0
V 







































  

 





















































α 2σ

3α4N

3α32σ

3α4N

ασα

0
ρ~

α2α2σ

0
V

2α3α42σ

4N α

5α548σ

4N3α11

2α2α2σ

2N

 

 

 
ηdηd

η η-η

η αη-η αη-ηη α
e

5α58σ

4N2α
0

2iV

α4α48σ

4N
0

V






































  

 

  















































 ηd

η-η

η αηη α
e

2α2σ

1
1

α3α4σ

4N
0

iV
. 

(2.20) 

Here 
0

y-ηη  . Now the complete solution will be  

I
v

R
vv


 . (2.21) 

R
v


and 
I

v


 given by equations (2.20) and (2.14). 

 

III. STRATIFIED BOUNDED COUETTE FLOW  

In this case, a stratified plane Couette flow bounded at Hy   is considered (Fig. 1). Here velocity 

v


 vanishes at Hη  , hence we have 
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 
H ηR

vB
αTHiσHα

eA
αTHiσHα

e






 

, (3.1) 

 
H ηR

vB
αTHiσHα-

eA
αTHiσHα

e






 

, (3.2) 

From equations(3.1) and (3.2), A and B are found to be 

   

 Hα2sinh  2

αTHiσHα
e H

R
v

αTHiσHα
e H

R
v

A











. 
(3.3) 

   

 Hα2sinh  2
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e H

R
v

αTHiσHα
e H

R
v

B











. 
(3.4) 

where     
H ηR

vH
R

v





. 

It is found that 

   
 i αx γz σαT H - y

0 0 0
v H A T + B  e

R 1 1

 
 
 
 

 
  . 

(3.5) 

   
 i αx γz +σαT H + y

0 0 0
v -H A T + B  e

R 2 2

 
 
 
 


 . 

(3.6) 

  

The values of the coefficients are given in APPENDIX . 

 

IV. RESULTS AND DISCUSSIONS 
In this problem, we have studied the evolution of linearized disturbances of a basic flow of an 

inviscid stratified  bounded couette flow with unit pulse for velocity and density as initial 

distributions. Here, we have resolved the disturbances into rotational and irrotational components.  

 

Figs. 2(a)–(b) are plots of  ̂  versus T for different values of Brunt alaisaV   frequency N (N = 0, 

0.2, 0.5) and φ   (
0 0φ 0 , 45 ) and figs. 3(a)–(b) are plots of  ̂ versus T for different values of 

Brunt alaisaV   frequency N (N = 0, 0.2, 0.5) and φ   (
0 0φ 0 , 45 ). It is observed that as the 

value of N increases 
R

v̂  decays at a faster rate for large time. Hence we can conclude that 

stratification stabilizes the flow velocity but there is growth in the perturbation density. 
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APPENDIX  
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                Fig. 2  Plots of  ̂  versus T  for (a) 
o0φ   and  (b) 

o45φ  ,  for different values of  N. 

     Fig. 3  Plots of  
R

v̂ versus T  for (a) 
o0φ   and  (b) 

o45φ  ,  for different values of  N. 
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